

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Carbon Di-Oxide Removal with Mesoporous Adsorbents in a Single Column Pressure Swing Adsorber

Soumen Dasgupta^a; Anshu Nanoti^a; Pushpa Gupta^a; Dilip Jena^a; Amar N. Goswami^a; Madhukar O. Garg^a

^a Indian Institute of Petroleum, Dehradun, India

Online publication date: 09 December 2009

To cite this Article Dasgupta, Soumen , Nanoti, Anshu , Gupta, Pushpa , Jena, Dilip , Goswami, Amar N. and Garg, Madhukar O.(2009) 'Carbon Di-Oxide Removal with Mesoporous Adsorbents in a Single Column Pressure Swing Adsorber', *Separation Science and Technology*, 44: 16, 3973 – 3983

To link to this Article: DOI: 10.1080/01496390903183170

URL: <http://dx.doi.org/10.1080/01496390903183170>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Carbon Di-Oxide Removal with Mesoporous Adsorbents in a Single Column Pressure Swing Adsorber

**Soumen Dasgupta, Anshu Nanoti, Pushpa Gupta, Dilip Jena,
Amar N. Goswami, and Madhukar O. Garg**
Indian Institute of Petroleum, Dehradun, India

Abstract: A five-step PSA cycle was studied for CO₂ separation from CO₂-N₂ gas mixture in a single column at elevated temperatures using Poly-ethyleneimine (PEI) impregnated mesoporous silica SBA-15 as adsorbent. The PSA cycle study included a strong adsorptive rinse step in which the strongly adsorbed component, i.e., CO₂ was used for rinsing the adsorbent bed in order to increase the purity of CO₂ product. The study indicates that the adsorbent is regenerable under typical PSA conditions. The productivity of the adsorbent studied for CO₂ separation was found to be comparable with commercial zeolite adsorbents as reported in literature.

Keywords: Adsorbent, CO₂ separation, poly-ethyleneimine, pressure swing adsorption, sba-15

BACKGROUND

Rising levels of atmospheric CO₂ emissions from burning of fossil fuels are now recognized to be the prime contributor to global warming and climatic change (1). The power plant constitutes a major CO₂ emitter and being a stationary source offers the best possible opportunity for application of CO₂ mitigation technology to combat global warming.

Received 19 December 2008; accepted 10 June 2009.
Address correspondence to Amar N. Goswami, Indian Institute of Petroleum, Dehradun, 248005, India. Fax: 091-135-2660098. E-mail: goswami@iip.res.in

Accordingly there are concerted research efforts being made worldwide to develop suitable technological solutions to capture CO₂ from power plant emissions (2). There are two possible scenarios where CO₂ can be captured in power plants and these are post-combustion capture and pre-combustion capture. Pre-combustion capture involving IGCC for power generation is still not widely commercialized and of immediate concern is post-combustion capture where CO₂ has to be removed from flue gas at pressures slightly above ambient temperature in the range 55 to 75°C and from levels varying from 5–6% in natural gas fired power plants to 10–15% from coal-based power plants. The challenges in supplying a technological solution to this problem appear daunting due to these constraints and the best available separation technology at present (which is amine absorption based) has been shown to increase the cost of power production by 35 to 40% if applied (3). Accordingly, several alternatives are being actively investigated to provide solutions at lower cost. In this context the adsorptive removal of CO₂ using Pressure Swing or Pressure–Temperature Swing Adsorption is one such alternative showing promise (4a,b,c). Among the adsorbents which have been investigated for such applications, zeolites 4A, 5A, 13X, ZSM-5, and activated carbons have shown high capacity for CO₂ at low temperature (~25°C) and atmospheric pressure but these capacities fall drastically with moderate increases in temperature (5a,b,c). Accordingly the search has been directed to the development of novel adsorbent materials with high capacity for CO₂ at moderate temperatures and low CO₂ partial pressures.

In an attempt to combine the favorable properties of liquid amine absorbent with those of solid adsorbents, the use of amine- or imine-impregnated mesoporous adsorbents for CO₂ removal is being actively studied. Mesoporous adsorbents of the MCM-41 or SBA-15 type have been chosen as support because of the large well-defined pore channel and pore volumes available which allow easy access of amine molecules into the structure so that significant quantities of amine can be loaded onto the adsorbent. Thus Xu et al. reported that polyethylene imine impregnated Al-MCM-41 has capacities of 126 mg/gm for CO₂ at temperatures of 75°C and in the presence of moisture (6). Similarly, amine impregnated SBA-15 adsorbents also show high capacities for CO₂ at moderate temperatures. Thus Hiyoshi et al. reported an increase in the adsorption capacities of amino silane grafted SBA-15 for CO₂ both under moist as well as dry conditions (7). Typical capacities reported at CO₂ partial pressure of 15 kPa and at 333 K were in the range of 1.51 mmol CO₂ per gm adsorbent. Zheng et al. reported CO₂ uptake by ethylene diamine modified SBA-15 was not affected by moisture and the adsorbent was fully regenerable by thermal treatment (8).

The above studies indicate that there is a possibility of developing an adsorption based (either Pressure Swing or Pressure-temperature swing) process for CO₂ recovery from flue gas at moderate temperatures using such mesoporous adsorbents loaded with amines or imine molecules having specific affinity for CO₂. It may be noted that there have been several studies on vacuum swing adsorption for CO₂ recovery using commercial zeolites (9,10) and most of the studies with mesoporous adsorbents have dealt with CO₂ adsorption capacity measurements with some limited reports on adsorbent regenerability. There has been no study reported on the behavior of such mesoporous adsorbents for CO₂ removal under typical PSA conditions. The present paper reports studies on a polyethylene imine modified SBA-15 adsorbent for CO₂ removal at moderate temperatures in a single column PSA. The aim was basically to observe the cyclic steady state behavior of the adsorbent with respect to adsorbent productivity and CO₂ purity in a typical PSA cycle that would be used for recovery of a strong adsorptive like CO₂ from flue gas. SBA-15 was chosen as the mesoporous support for the polyethylene imine because of its higher wall thickness compared to MCM-41, which would offer better attrition resistance required to counter the pressure surges in the PSA cycle (11).

EXPERIMENTAL

Synthesis and Characterization

SBA-15 was synthesized by a modified literature procedure (11). In a typical synthesis 40.6 g of EO₂₀PO₇₀EO₂₀ (P123), a tri block copolymer surfactant (Av. Mn. 5800), was dissolved into 1200 ml of 2 M HCl solution by vigorous stirring at 35°C for 3 hours. Into this solution 93 ml TEOS (Aldrich, 98%) was added dropwise over a period of one hour under continuous magnetic stirring at 35°C. After the TEOS addition the stirring was further continued for 24 h at the same temperature. The white slurry obtained was kept at room temperature for 2 days without stirring. The slurry was next kept in a closed Teflon beaker and heated at 100°C for 12 hours. The solid obtained was recovered by filtration, washed thoroughly with hot distilled water, dried, and then calcined at 550°C (1°C/minute heating rate) for 8 hours. An extrudate of the calcined SBA-15 was formed by mixing the solid with γ -alumina (30 wt%) as binder to form a paste which was extruded through a stainless steel hand extruder provided with a die of 1.5 mm i.d. The SBA-15 alumina extrudate was finally calcined at 500°C for 5 hours.

The synthesized SBA-15 material and its alumina extrudate were characterized for their BET surface area, pore volume, and pore size

Table 1. Surface characterisation of mesoporous silica PEI support

Sample	BET S.A. (m ² /g)	BJH cumulative pore volume calculated from he adsorption branch of N ₂ isotherm (cm ³ /g)	BJH Av. Pore width calculated from the adsorption branch (Å)
Calcined SBA-15	787.07	1.86	123.5
SBA-15-Alumina Extrudate	590.26	1.35	110.2

distribution by measuring their N₂ adsorption-desorption isotherms at liquid nitrogen temperature (-196°C) in a Micromeritics Tristar instrument. These materials were degassed at 120°C for 12 h prior to measurement. Specific surface areas were calculated by using the multiple-point Brunauer–Emmett–Teller (BET) method in the relative pressure range of $P/P_0 = 0.01 – 0.3$. Pore size distribution curves were computed based on the Barrett–Joyner–Halenda (BJH) model and the pore sizes were estimated from the peak positions of BJH pore size distribution curves. Total pore volumes were obtained from the volumes of N₂ adsorbed at $P/P_0 = 0.995$. The pore characteristics of these materials are tabulated in Table 1.

For 50 wt% poly-ethyleneimine (PEI) impregnation into this extrudate, 15 g PEI (Aldrich, Av. Mn. 800) was first dissolved into 75 g of methanol. 15 g of the SBA-15-alumina extrudate was poured into this PEI solution and the mixture was mechanically shaken for 10 minutes. Then methanol was then slowly evaporated with the help of a rotavapor instrument. The 50 wt% PEI impregnated SBA-15-alumina extrudate was next dried at 80°C for overnight before loading into the PSA column.

Equilibrium isotherm measurements of CO₂ and N₂ on the adsorbent synthesized were carried out at 55 and 75°C using Micromeritics ASAP 2020 apparatus.

Breakthrough Measurements and PSA Cycle Studies

The breakthrough measurements and single column PSA studies have been carried out in the experimental set-up shown in Fig. 1. It consists of a SS316 made adsorption column of an internal diameter 0.5 cm and a total column height of 65 cm with external electric heaters thermostatically controlled to maintain experimental temperature. 12 gm of the 50 wt% PEI impregnated SBA-15 extrudate was loaded into this column. The unit is PC/PLC based and equipped with five electronically actuated

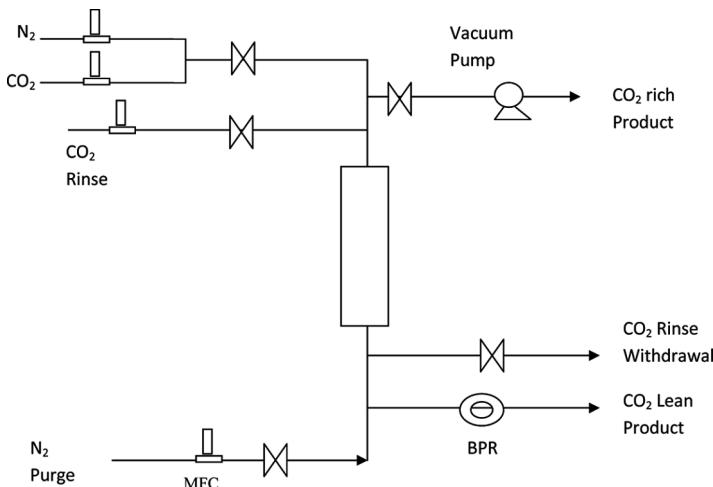


Figure 1. Single column PSA unit.

solenoid valves for the control of the cycle times and gas flow direction. The pressure within the column was monitored by a pressure transducer and controlled by a back pressure regulator. The CO₂ concentration in the various gas streams withdrawn during various steps in the PSA cycle was measured by on-line IR based CO₂ gas analyser. All the experiments were carried out at two temperatures, 55°C and 75°C. The experimental data was gathered after a cyclic steady state was attained in each run, which was usually after 10–15 cycles. Nitrogen purge and CO₂ rinse streams were provided from respective gas cylinders through flow control of respective mass flow controllers.

Process Description

The PSA cycle investigated is based on the strong adsorptive rinse cycle consisting of rinsing of the adsorbent bed with a strongly adsorbed component after completion of the adsorption step. In the present work the strongly adsorbed component is CO₂, which is required in a high purity for sequestration purposes. The five steps PSA cycle investigated consisted of the following steps:-

Feed Pressurization: The PSA cycle starts with pressurization of the adsorption column by introducing the feed mixture at a particular feed rate up to a column pressure of 3.0 bar (a).

Adsorption Step: The feed mixture continues to flow and CO_2 lean nitrogen gas is withdrawn through the product line and subsequently analysed for CO_2 concentration by an on-line gas analyser. Column pressure is maintained at 3.0 bar (a) by the back pressure regulator.

Blow Down: In this step, the column is depressurized co-currently to almost atmospheric level to remove the void gas. The column pressure during the rinse is around 1.2 bar (a).

Rinse Step: This step consists of pressurization of the column with pure CO_2 co-currently from a CO_2 gas cylinder followed by withdrawing rinse effluent while the CO_2 flow is continued. This step is used to replace the remaining nitrogen in the column by CO_2 . The column pressure during this step is 1.5 bar (a).

Evacuation + Purge Step: The CO_2 saturated bed is evacuated counter-currently and purged simultaneously with nitrogen gas. The column pressure during this step is 0.5 bar (a).

RESULTS AND DISCUSSION

The single component isotherm data for adsorption of CO_2 and N_2 at 55 and 75°C are plotted in Fig. 2. The breakthrough measurements have been carried out at two different temperatures, 55°C and 75°C and at three different feed concentrations of CO_2 in nitrogen at each temperature. Feed flow rates and column pressures were maintained constant at 0.4 LPM and 3 bar absolute respectively. The breakthrough curves are reported in Figs. 3 and 4.

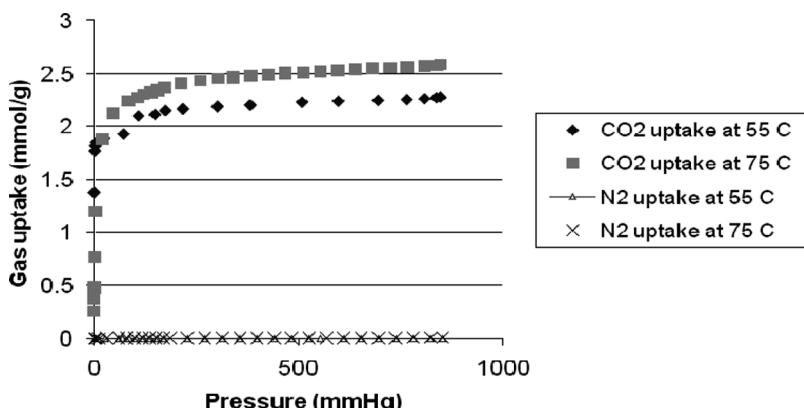


Figure 2. Equilibrium isotherm on CO_2 and N_2 at 55°C and 75°C.

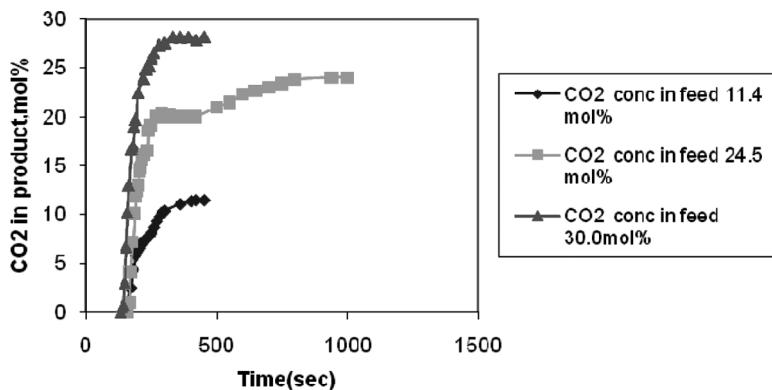


Figure 3. Breakthrough curve with SBA-15 + PEI 50% at 55°C.

The adsorption capacity for CO₂ has been calculated from the breakthrough curves using the following relationship

$$Q = v_f^* \rho_{f*} \left[\int (1 - c_t/c_0) dt \right] * m_f / W_{ad} \quad (1)$$

The results of these measurements are given in Table 2.

The adsorption capacities calculated from the breakthrough measurements with CO₂ partial pressures in the range of 1 bar are around 3 mmol/gm at temperatures 55 to 75°C. These calculated capacities are slightly higher than the capacities determined from the equilibrium isotherm measurements (Fig. 2). Capacities in this range have also been

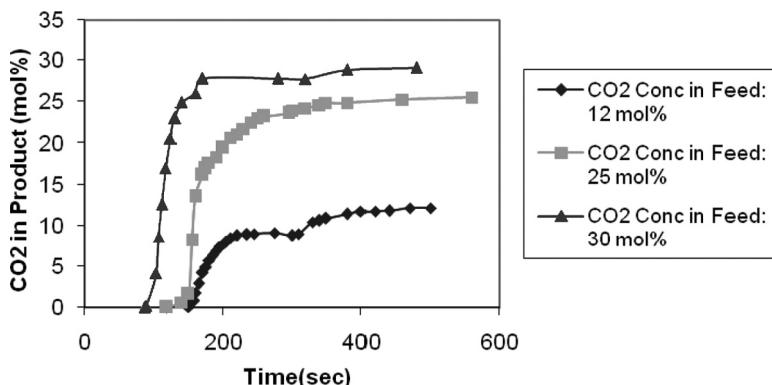


Figure 4. Breakthrough curve with SBA-15 + PEI 50% at 75°C.

Table 2. Adsorption capacities from breakthrough measurements

Temperature [°C]	CO ₂ concentration in the feed, [vol %]	Adsorption capacity for CO ₂ , [mmol/gm adsorbent]
55.0	11.5	1.295
55.0	24.0	2.872
55.0	30.0	2.967
75.0	12.0	1.358
75.0	24.0	2.27
75.0	30.0	3.120

reported by Xu et al. for PEI impregnated MCM 41 adsorbents (6). Son et al. have also recently reported capacities of 2.88 mg/mol for PEI impregnated SBA-15 (12).

At temperatures of 333 K, with 15 kPa of CO₂ partial pressure, Hiyoshi et al. reported adsorption capacities of 1.58 mmol/gm for CO₂ using 3 (trimethoxy silylpropyl) diethylene triamine impregnated SBA-15 adsorbent which is slightly lower than our isotherm data taken with CO₂ pressures in this range at 328 to 348 K (7). The adsorption capacity data both from the isotherm and breakthrough measurements indicate that the increase of temperature does not adversely affect the adsorption of CO₂ in the imine-impregnated mesoporous adsorbent. On the contrary a slight improvement in capacity is noted at the higher temperatures.

Similar to conditions used in the breakthrough experiments, the PSA Experiments in the single column were also carried out at two temperatures 55° and 75°C, at feed gas flow rate of 0.4 LPM. CO₂ concentration in the feed was 11.5 to 12 mol%. The five-step PSA cycle timings used are reported in Table 3. As the breakthrough times observed with this feed mixture were around 120 to 130 secs for both temperatures, the feed pressurization plus the adsorption cycle time was taken as 25% of the

Table 3. Cycle timings used in single column PSA

Cycle step	Time [secs]
Feed Pressurization	5
Adsorption	25
Blowdown	5
CO ₂ rinse	10, 15, 20
Evacuation with N ₂ purge	25

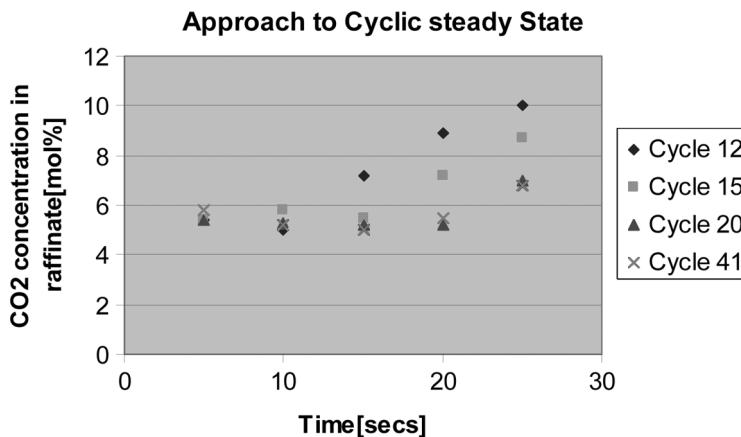


Figure 5. Time dependant CO₂ concentration in Raffinate.

breakthrough time which totalled to 30 secs. The evacuation time was taken as the same as the adsorption time. Adsorption pressure was kept at 3.0 bar (a) while during the evacuation and purge step the column pressure reached 0.5 bar (a). The CO₂ concentrations in the various effluent streams were measured using IR based CO₂ analyser. Figure 5 shows the approach to cyclic steady state for the CO₂ lean effluent stream from the adsorber. The data demonstrate the satisfactory regenerability of the SBA-15 adsorbent with cyclic steady state being readily reached after 15 to 20 cycles.

At each experimental temperature, the parameter varied was the CO₂ rinse time which was varied from 10 to 20 seconds. The effect of variation of this parameter on the purity of the recovered CO₂ and the

Table 4. Single column PSA data for CO₂ recovery with Imine Impregnated SBA-15 adsorbent

Experimental temperature [°C]	CO ₂ rinse time [sec]	Recovered CO ₂ purity [mol %]	Adsorbent productivity N. L. CO ₂ /Kg/min.
55.0	10	27.3	3.3
55.0	15	34.7	2.9
55.0	20	42.0	2.7
75.0	10	27.4	3.4
75.0	15	40.0	3.4
75.0	20	45.3	2.9

productivity of the adsorbent was evaluated. Here the productivity was defined in terms of Normal Liter CO₂ recovered per Kg adsorbent per minute. The results are reported in Table 4 below.

The results of the PSA cycle studies indicate that as CO₂ rinse time increases, the recovered CO₂ purity increases. This is expected as increase in the rinse time serves to displace more void nitrogen present in the column. The effect is seen at both experimental temperatures. The CO₂ purity improves slightly at higher temperatures in line with our measurements of capacities from both isotherm and breakthrough data which indicated improvement in capacities at higher temperatures. It is interesting to note the adsorbent productivities observed. These productivities compare very well with the productivity data reported by Chue et al. on a two bed PSA for CO₂ recovery in a similar CO₂ rinse cycle using commercial zeolite adsorbents (13). Their data had been taken at ambient temperatures and the productivities will decrease further at higher temperatures of 55 to 75°C as used in the present study. This suggests that the SBA-15 adsorbent would offer a better performance in PSA than commercial zeolites at the temperatures required for CO₂ recovery from flue gas. However, while the presence of moisture which is present in flue gas is reported (14) to promote the adsorption of CO₂ on PEI loaded mesoporous adsorbents, the effect of SO_x and NO_x which are also present in flue gas, is not known and further studies are required.

CONCLUSION

Mesoporous adsorbents of the SBA-15 type impregnated with PEI have been synthesized and evaluated for CO₂ recovery in a single column PSA at typical temperatures expected for a recovery system in a power plant. The adsorption capacities of this adsorbent for CO₂ has been measured and found to compare reasonably well with literature data. The PSA cycle studies demonstrate that in a typical strong adsorptive rinse cycle that would be used for CO₂ recovery, the adsorbent performs satisfactorily with the system reaching a cyclic steady state in a reasonably short period. Adsorbent productivities are better than those reported with commercial zeolite in a similar PSA cycle.

ACKNOWLEDGMENT

The authors would like to thank Dr. R.S.Somani, Central Salt and Marine Chemical Research Institute, for his assistance with the isotherm measurements.

REFERENCES

1. U.S. Energy Information Administration Brochure #: DOE/EIA-X012 Release Date: May 2008. <http://www.eia.doe.gov/bookshelf/brochures/greenhouse/Chapter1.htm>
2. Aaron, D.; Tsouris, C. (2005) Separation of CO₂ from flue gas: A review. *Separation Sci. and Technol.*, 40: 321.
3. Herzog, H.J.; Drake, E.M. (1993). Long-term advanced CO₂ capture options. Cheltenham, U.K.: IEA/93/0E6; IEA Greenhouse Gas R&D Programme.
4. (a) Ko, D.; Siriwardane, R.; Biegler, L.T. (2003) Optimization of a pressure-swing adsorption process using zeolite 13X for CO₂ sequestration. *Ind. Eng. Chem. Res.*, 42: 339; (b) Mérel, J.; Clausse, M.; Meunier, F (2006). Carbon di oxide capture by indirect thermal swing adsorption using 13X zeolite. *Environ. Progress.*, 25: 327; (c) Ishibashi, M.; Ota, H.; Akutsa, N.; Umeda, S.; Tajika, M.; Izumi, J.; Yasutake, A.; Kabuta, T.; Kagayama, Y (1996). Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. *Energy Convers. Mgmt.*, 37: 929.
5. (a) Siriwardane, R.V.; Shen, M.S.; Fisher, E.P. (2005) Adsorption of CO₂ on zeolites at moderate temperatures. *Energy & Fuels*, 19: 1153; (b) Harlick, P.J.E.; Tezel, F.H (2004). An experimental adsorbent screening study for CO₂ removal from N₂. *Micro. Meso. Mater.*, 76: 71; (c) Burchell, T.D.; Judkins, R.R (1996). *Energy Convers. Mgmt.*, 37: 947.
6. Xu, X.; Song, C.; Andréson, J.M.; Miller, B.G.; Scaroni, A.W. (2003) Preparation and characterization of novel CO₂ “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. *Micro. Meso. Mater.*, 62: 29.
7. Hiyoshi, N.; Yogo, K.; Yashima, T. (2005) Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. *Micro. Meso. Mater.*, 84: 357.
8. Zheng, F.; Tran, D.N.; Busche, B.J.; Fryxell, G.E.; Addleman, R.S.; Zemanian, T.S.; Aardahl, C.L. (2005) *Ind. Eng. Chem.*, 44: 3099.
9. Cavenati, S.; Grande, C.A.; Rodrigues, A.E. (2006) Removal of carbon di-oxide from natural gas by vacuum pressure swing adsorption. *Energy Fuels*, 20: 2648.
10. Zhang, J.; Webley, P.A. (2008) Cycle development and design for CO₂ capture from flue gas by vacuum swing adsorption. *Environ. Sci. Tech.*, 42: 563.
11. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. (1998) *J. Am. Chem. Soc.*, 120: 1024.
12. Son, W.J.; Choi, J.S.; Ahn, W.S. (2008) Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. *Micro. Meso. Mater.*, 113: 31.
13. Chue, K.T.; Kim, J.N.; Yoo, Y.J.; Cho, S.H.; Yang, R.T. (1995) Comparison of activated carbon and zeolite 13X for CO₂ recovery from flue gas by pressure swing adsorption. *Ind. Eng. Chem. Res.*, 34: 591.
14. Xu, X.; Song, C.; Miller, B.G.; Scaroni, A.W. (2005) Influence of moisture on CO₂ separation from gas mixture by nanoporous adsorbent based on polyethylene imine modified molecular sieve MCM-41. *Ind. Eng. Chem. Res.*, 44: 8113.